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The dispersion of matter in turbulent flow through a pipe
By Sir GrorrrEY TAavLOR, F.R.S.

(Received 24 December 1953—Read 11 March 1954)

The dispersion of soluble matter introduced into a slow stream of solvent in a capillary tube
can be described by means of a virtual coefficient of diffusion (Taylor 1953 @) which represents
the combined action of variation of velocity over the cross-section of the tube and molecluar
diffusion in a radial direction. The analogous problem of dispersion in turbulent flow can be
solved in the same way. In that case the virtual coefficient of diffusion K is found to be
10-1av, or K="7-14aU ./y. Here a is the radius of the pipe, U is the mean flow velocity, y is
the resistance coefficient and v, ‘friction velocity’.

Experiments are described in which brine was injected into a straight $ in. pipe and the
conductivity recorded at a point downstream. The theoretical prediction was verified with
both smooth and very rough pipes. A small amount of curvature was found to increase the
dispersion greatly.

When a fluid is forced into a pipe already full of another fluid with which it can mix, the
interface spreads through a length S as it passes down the pipe. When the interface has
moved through a distance X, theory leads to the formula S?=437aX (v,/U). Good agreement
is found when this prediction is compared with experiments made in long pipe lines in
America.

1. INTRODUCTION

In a recent paper (Taylor 1953 a) it was shown that when soluble material is injected
into a tube through which a viscous fluid is flowing in stream-line motion it is
dispersed, relative to a frame of reference which moves with the mean speed of flow,
as though it were acted on by a virtual coefficient of diffusion X, where

a?U?

= B®D (1)

Here a is the radius of the pipe, U the mean speed of flow, and D the coefficient of
molecular diffusion of the injected material in the fluid.

The object of the present investigation is to find out whether an analogous treat-
ment can be applied to dispersion in a fluid in turbulent flow.

This question has a practical interest because one of the methods used by
engineers for measuring the flow in large water mains is to inject a packet of salt
into the main at one point and to measure the electrical conductivity of the water
an another point distant X downstream from the point of injection (Allen & E. A.
Taylor 1923). If each element of the salt solution were carried down the fluid
without diffusing radially, and if the electrode could be so arranged as to measure
the mean concentration over a section, the conductivity would start to rise at the
instant the maximum velocity u, in the middle of the pipe carried the salt to the
measuring point. Ifthisrise began at time 7\ after the injection, evidently u, = X /7.
The subsequent course of the conductivity-time curve will depend on the initial
distribution of salt at the moment of injection and on the distribution of velocity
over the section of the pipe. To use the method for measuring the mean speed of
flow, the point on the conductivity-time curve which corresponds to the time taken
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by a point moving with the mean speed of flow to cover the distance X must be
determined. If this is 7},, the mean speed of flow is

U=X/T, (1-2)

To use the method it is therefore essential to know how to pick out the instant 7},
by inspection of the conductivity-time curve measured at the point X. This
problem was solved empirically by Allen & Taylor (1923), who first developed this
method, by measuring the rate of discharge, from their water main by other methods
and observing the point on the conductivity-time curve which corresponded to
time X/U. They found in this way that 7}, corresponded to the instant at which the
conductivity at X was a maximum. This empirical result could not have been
obtained if the salt had been carried down the pipe in laminar flow without lateral
turbulent diffusion. In such a case it is a simple matter to calculate the distribution
of concentration which results from any given initial distribution. If, for instance,
a mass M of salt is initially concentrated uniformly on the plane x = 0, the mean
concentration (Taylor 1953a) at time ¢ is uniform over a length u,¢ of pipe, where
g is the maximum velocity in the centre of the pipe. Thus the mean concentration

per unit volume is C = ot where 77a? is the area of cross-section of the pipe. The

. 0

concentration-time curve at the section # = X will therefore be represented by
C=0 (0<t< X/u,),

X (1-3)
= natugt (t> X [ug).
The mean velocity in the pipe is $u,, so that the point on the concentration-time
curve which corresponds to the mean velocity is not that at which the concentration
is a maximum, but that at which the concentration is only half its maximum value.

2. GENERAL CONSIDERATIONS ON DISPERSION IN TURBULENT
FLOW THROUGH A PIPE

If a number of particles are released in uniform field of turbulence in which the
mean velocity is zero, it has been shown (Taylor 1922) that the mean value of 22 is

22 = 2ﬁftftla(g) dgds, (2-1)
0J0

where R(£) is the correlation between the velocity « of a particle in the direction
x at one instant, f,, and the velocity of the same particle at time fy+&. If § is

sufficiently great R(§) becomes zero and f R(£)d{ is finite. In that case when ¢ is
0

very large e
2% = 2u2tj R(£) dE. (2-2)
0

It was pointed out to me in private conversation with G. K. Batchelor, that the
case of flow at constant speed through a long uniform pipe is one of the cases to
which this analysis can legitimately be applied, but z in (2-2) must be replaced by
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x, =x—Utand u by 4’ = u— U, U being the mean speed of flow. The mean-square
deviation is then ™
2l = 2u’2tj R(£)dé, (2-3)
0
or, since t = X /U, o o
2} = 2u'2XU‘1f R(§)dE. (2-4)
0

Bearing in mind (@) that U is uniform along a uniform pipe and () that the correla-
tion must disappear when X is sufficiently great, it seems that in a uniform pipe the

spread, /x2, of an initially concentrated mass must increase as X*. If, in any
practical case, the spread is observed to increase in some other way than as X?, this
is a sure indication that the system considered is not simply a long straight pipe.
The spread of particles which diffuse in a random manner may also be described
by the diffusion equation 80 x &0 23
ot a2’
where K is a coefficient of diffusion and C is the concentration of the diffusing
substance.
A solution of (2-5) is O = A} oK (2-6)

Here A is a constant depending on the total amount of diffusing material. To find
2 insert the value of C from (2-6) in

-+
o f x%gg dz,
—odyy
It is found that 3 = 4K,
and comparing this with (2-4)
K =1u?| R()dE (2-8)
0

3. BASIS OF THE PRESENT ANALYSIS

In the preceding paragraph it is shown that the dispersion of diffusible matter
about a point which moves with the mean speed of flow can be regarded as being
due to a virtual coefficient of diffusion K. The value of K has been expressed in
(2-8) in terms of a correlation coefficient R(§) which cannot be measured directly
even though in a continuous field of flow it must exist.

The object of the analysis which follows is to predict the value of K and to show
how it is connected with the previously“measured quantities connected with
turbulent flow in pipes.

Use of previous experimental results

Two experimental results are needed: (A) the distribution of velocity over the
cross-gsection of a pipe and (B) the connexion between the transfer of momentum
in turbulent flow and the transfer of other transferable properties.
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(A) The ‘universal’ distribution of velocity in a pipe will be assumed. It has been
well verified by experiment (Goldstein 1938, p. 336) that the velocity » at radius
r in a pipe of diameter 2a is given by

B2 1), (3:1)
*
where z=rla. (3-2)

The function f(z) is universal in the sense that it applies to all straight pipes with
circular cross-section whether smooth or rough, provided the flow is fully turbulent.
4, is the velocity at the centre of the pipe and

vy = (To/p)}, (3-3)
where 7, is the friction stress exerted by the turbulent fluid of density p on the wall.

14 T T I

10

Je) 7

2 \\
0 1 L 1 LT
10 08 06 0-4 02 0
z
Figure 1

The function f(z) has been determined by several workers. The values used in the
present work are derived from a mean curve using measurements made by Stanton &
Pannell (1914) and by Nikuradse (1932). They conform to von Karman’s logarithmic
law near the wall. They are given in column 2 of table 1 and are displayed in figure 1.
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(B) Reynolds’s analogy will be assumed to be true. According to this assumption
the transfer of matter, heat and momentum by turbulence are exactly analogous.
If € is the coefficient of transfer, Reynolds’s analogy may be expressed in the
present case by the equations

_ T _ m
T (34)
Por or

Here 7 is the shear stress at radius r, m is the rate of radial transfer of matter of
concentration C.

Reynolds’s analogy has been experimentally verified as being nearly true in
turbulent flow near a solid surface. Itisnot quite true for diffusion in free turbulence
such as that behind an obstacle placed in a wind stream. Experiments in which air
flows through heated pipes seem to show that Reynolds’s analogy may safely be
applied to turbulent pipe flow.

From (3-1) the mean velocity U may be found:

1 1
U= 2f uzdz = uo—zv*f 2f(z)dz. (3-5)
0 0

Using values of f(z) given in column 2, table 1, the values of f zzf(z) dz given in
0

column 4, table 1, were estimated by linear interpolation. Near z = 1 this method
becomes inaccurate because according to von Karman’s logarithmic law f(z) =0
ag z— 1. In fact the values of f(z) in the interval 0-9 <z < 1 have been taken as

f(z) = constant — 2-51In (1 —z), (3-6)
and the constant was chosen so that f(2) is continuous at z = 0-9, where its value is
7-1. Since 7-1+2-5In (0-1) = 1-35,

f(z) =135—2-5In(1—2) when 09<z<]l. (3-7)

The figures in column 4, table 1 for 0-9 <z <1 were obtained by integrating (3-7).
The last figure in column 4, table 1, is 2-125, so that from (3-5)

U = uy—4-25v,,. (3-8)

Some values previously given for u, — U were 4-07v, (Nikuradse) and 4-7v,, (Stanton)
(Goldstein 1938, p. 339).

4. MECHANICS OF DISPERSION IN TURBULENT FLOW

In a circular pipe the transfer coefficient ¢ can be derived without assumption
because the turbulent stress 7 at radius r is related to 7, by the equation

T =Tyz 7L, (4-1)
€ = azvy[f'(2), (4-2)

where f'(z) is written for (—% f(z). Using Reynolds’s analogy, the equation for

0 ( oC oC oC
. (er—a—?;) =7 (u%—}—g) . (4-3)

so that from (3-4) and (3-1)

conservation of C is
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Substituting for ¢ from (4-2), (4-3) becomes
0 ( 22 o0\ %,y 0C a oC )
= e~ o) %) 4

Here x is measured along the pipe from a fixed point. It is convenient to use axes
which move with the mean speed of flow. Thus the new co-ordinate x, is defined by

x =z, + Ut, (4-5)

and (4-4) becomes
7 rere) — e (%f) ) (+:6)
where (%g)l — %(;+ gg @)

is the rate of change of C at a point which moves with velocity U.

First we may seek the solution of (4-6) for the case when 0C/ox is independent of
z and z, and 0C/ot, = 0. C is then of the form

¢=0,+0, (4-8)

where C;, is independent of z but varies linearly with 2, and C, is independent of ;.
Equation (4-6) can then be solved. Writing

B(2) f (f(2)— 425) 2z (49)

so that ¢ is negative, 0,1y o
so that if o) =1 '(j)gﬁ(z), (411)
0.=a%2 [Ty (#12)

C, is therefore negative when dC, /dx, is positive. Values of — fz¢(z) dz are given in
0

column 8, table 1. The rate of transfer of C' across a section can now be calculated;
it is

Q) = 2mav, f:)((z) (a%%l”_l) , (4-13)
where ¥(2) = 2(f(2) — 4-25) ( j O U (2) dz). (4-14)

Values of —¢(z) and —1(z) are given in columns 5 and 7 to table 1, and values of
2
x(2) and f x(2)dz in columns 10 and 11. It will be seen that the last figure in
0
column 11 is —5-03, so that

dc
Q=— 10-06ﬂa3v*§xﬂ. (4-15)
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A virtual coefficient of diffusion K would transfer matter across a section at rate
— Kma? doml, so that matter is transferred across planes which move with the mean

%y
speed of flow as though it were being dispersed by a virtual coefficient of diffusion

K = 10-06av,. (4-18)

Estimate of the effect of longitudinal component in turbulent diffusion

In general it is found in turbulent systems that there is a strong tendency to
isotropy. To estimate the order of the effect of longitudinal turbulent diffusion on
the longitudinal dispersion it is sufficient to assume that the coefficient of longi-
tudinal diffusion is equal to ¢, the coefficient of lateral diffusion. The rate of transfer
of matter across a plane owing to longitudinal diffusion is therefore

1
Q = faQWred—Cdr = 2ﬂa2@f ezdz,
0 dx

dx 0
and from (4-2) € = avy z[f'(2),
dC (1 22
so that ' = 2maPvy — | 5—da. 4-17
V=2 o) (17

1,2
Using the figures in column 6 of table 1 for f’(z)/z% the value of j JE%—) dz was found
0

to be 0-026, so that the mean coefficient of diffusion due to the longitudinal com-

ponents of turbulent velocity is

&
K= ,dC

Ta?—
dx

= 0-052av,, (4-18)

This is small compared with K, but it is additive, so that the corrected value of
K allowing for longitudinal diffusion is

K = (10-06 + 0-05) av, = 10-1av,. (4-19)

An expression for K equivalent to (4-18) was found by Worster (1952). He noted
that it is of order ;34th of the value necessary to account for the dispersion observed
in pipe lines. He suggested that an expression analogous to (4-18), but with the
numerical factor increased about 100-fold might be used as a ‘working formula’
for predicting dispersion. It will be seen that there is a good theoretical basis for
this suggestion. The formula (4-19) was given earlier (Taylor 1953b) without proof
and with the factor 8-98 instead of 10-1.

5. Ulvy AS FUNCTION OF R FOR SMOOTH PIPES

In applying the formula (4-19) to predict the dispersion in a tube it is convenient

to write it in the form

K = 10-1aU (”—[}‘) . (51)

Vol. 223. A. 30
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For smooth pipes v,/U depends only on the Reynolds number. By definition
v 1 /7 . s g .
—ﬁ*— =0 —pi’. The coefficient y, which is usually used to express the results of experi-
ments or friction in pipes, is defined by
To = Jz‘VPUz, (5-2)
)
so that »ﬁ”i = J(&y). (5:3)
TaBLE 2
U vy log;o R R Ulvy log, R R
12 3-150 1-41 x 108 22 5-181 1-52 x 10°
13 3-361 2-30 x 103 23 5-378 2-39 x 108
14 3-570 372 x 103 24 5-573 374 x 108
15 3-777 5-99 x 108 25 5-767 5-85 x 108
16 3-982 9-60 x 10% 26 5-961 9-15 x 105
17 4-185 1-53 x 10* 27 6-157 1-44 x 108
18 4-387 2-44 x 104 28 6-347 2-22 x 108
19 4-587 3-86 x 10* 29 6-550 355 x 108
20 4-786 6-11 x 10¢ 30 6-731 5-38 x 108
21 4-984 9-64 x 10%
30— T T T T T T T
28 - /
26
- -
24
- 4
22
U | -
)
18
16
14 4
12 / ) | ! ! ! | !
3 4 5 6 7
log o B

FicUure 2
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The relationship between y and the Reynolds number B = 2¢U /v may be expressed
by the equation (Goldstein 1938, p. 338, eq. (19))

vyt = —0-40+4-00log;y R + 2-00log,o7. (5-4)

From this equation the value of R corresponding to any given value of v can be
found.

To facilitate the application of (5-1) to actual pipes the values of R corresponding
to integral values of U /v, from 12 to 30 were calculated using (5-4). They are given
in table 2 and are displayed in figure 2. It will be seen that when R is plotted
logarithmically the curve is very nearly, but not quite, a straight line.

6. PREDICTED DISTRIBUTION OF CONCENTRATION OF MATERIAL
INITIALLY CONCENTRATED AT x=0 AT TIME {=0

Since the centre of the diffused material at time ¢ is at x = Ut the distribution of

concentration at time ¢ is
—_— — 2
C = 4i~*texp [ (z—Ut) ] (6-1)

4Kt

at a time ¢ the distribution is symmetrical and Gaussian. Itis centred on the point
X = Ut. It will be seen, however, that when measurements are made at a fixed
point z, the concentration-time curve is not symmetrical. The lack of symmetry,
however, is small when Uf is much greater than ,/(4Kt), and taking K = 10-lav,,
X = Utthisgivesasthe condition that the asymmetry inherentin (6-1) shall be small,
X dony

U

In most cases U /v, is of order 15, so that at distances down stream greater than say
100 diameters the asymmetry of the concentration-time curve may be expected to
be small. This expectation is not verified however when the Reynolds number is so
low that the laminar boundary layer may contain an appreciable quantity of the
diffusing material. In such cases the material is only released slowly by molecular
diffusion and may give rise to a long ‘tail’ in the concentration-time curve.

(6-2)

7. COMPARISON WITH OBSERVATIONS

Allen & Taylor (1923) injected salt into a stream of water flowing through a pipe
40in. in diameter and 355 ft. long. They measured the changes in conductivity at
the outlet end. Their results for a number of experiments when the speed of flow
was 3-45ft./s, or 105 cm/s are shown in figure 3, which is reproduced from their
paper. It will be seen that the maximum conductivity occurred 103s after injecting
the salt at the other end of the pipe. The conductivity-time curves seem to be nearly
symmetrical. The length of time during which the conductivity was greater than
half its maximum value was measured in each case and was found to be 15}, 131,
17 and 14 s. The mean is 15s. The mean length of pipe containing fluid of concentra-
tion greater than half the maximum may be defined as 2x;, so that in the observa-
tions under consideration

22y = 156 x 105 = 1575 cm.

30-2
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If the curves of figure 3 were accurately Gaussian, K would be derived from the
formula

2
Zy
2 1n2 =0 .
;= In2 = 0-693, (7-1)
1575)2
so that . K (1575) = 2-18 x 103 cm?s~1, (7-2)

~ 16(103) (0-693)
Taking the dynamical viscosity, » for water at normal temperatures as 0-011, and
U = 105 cm/s, the value of R is 0-97 x 105, so that log,, & = 5-987. From figure 2

this value of log,, B corresponds to U/v, = 26-0. The value for a rough pipe would
be less.

deflexion of ammeter

|
M\
X X
200
150—
100f—
50 |
80 90 100 110 120 - 130 140

time (sec)

Ficure 3. Allen & Taylor’s measurements in a 40 in. pipe 355 ft. long. Salt charge, } sec;
4 in. electrode at centre of pipe; timing by metronome and stopwatch; readings every
2 sec; the broken vertical line indicates the mean time from @ by weir.
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To compare observed values of dispersion with those calculated using (5-1) it is
convenient to divide the observed value of K by av, or aU(v,/U). If the theory
were exactly true, (5-1) shows that this number would be 10-1. In Allen & Taylor’s
experiments, displayed in figure 3,

K (U) 2-18 x 103

(o) = m(zs-m = 10-6. (7:3)

The closeness of the agreement between this value 10-6 and the theoretical value
10-1 is partly accidental, for in another set of measurements made in the same pipe
by the same authors at a lower speed gave the value 11-7 when analyzed in the
same way.

8. EXPERIMENTS AT THE CAVENDISH LABORATORY

Smooth pipes

The method used in the experiments of Allen & Taylor (1923), though admirably
adapted to the purpose for which it was intended, was not sufficiently refined to
give entirely reliable information on dispersion, and the pipe length, 106 diameters,
was too small for valid application of the theory. The experiments of Hull & Kent,

FicUure 4. Part of apparatus for measuring dispersion of brine.

to be described later, were not made with an unobstructed straight pipe, so that they
arenot quite suitable for comparison with the theory. It seemed worth while therefore
to set up a straight pipe in the laboratory and measure the concentration-time curve
down stream of a point where salt was injected. Part of the apparatus is sketched
in figure 4. A stainless steel pipe ZF @G was laid on a straight bed. Water from a tank
in the roof of the laboratory was run through the pipe and the flow measured by
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means of a calibrated bucket. To ensure that the salt was introduced very rapidly
and without affecting the flow, the spring piston shown in figure 4 was made. This
piston had two transverse holes, 4 and B, each $in. diameter and separated by
about 4;in. The spring C' was compressed by means of the screw D until a catch
(not shown) fixed the piston in the position shown in figure 4 where the lower hole B
formed a continuous portion of the main pipe ZFG. The screw D was then lowered
so that when the catch was released the piston would spring down to a position
where the hole 4 was in line with the pipe. In performing an experiment the brine
was introduced at the hole H in the top of the piston so that the hole 4 was filled
with it. This method made it possible to introduce the salt suddenly with very little
disturbance to the flow.

The first experiments were made with a in. pipe 0-952 cm internal diameter and
480 cm long. Small two-point electrodes were placed at distances X = 15 and
X = 468cm from the piston. These were supplied with alternating current at
2000 ¢/s and connected to a double-beam oscillograph so that the deflexions of the
beams were expected to be proportional to conductivity of the fluid passing the
electrodes. The screen of the oscillograph was projected on to a photographic film
fixed to a rotating drum. Figure 5 shows a record taken at U = 213 cm/s in which the
conductivity at X = 15 and at 464 cm are shown. The upper trace in figure 5 is
a time mark made by connecting a 50-cycle tuning fork to the second beam of the
oscillograph. When the trace for 464 cm was measured it was found to be rather
unsymmetrical. It was also found to differ from an error curve in being too wide at
half concentration compared with the width at quarter concentration. It was
suspected, and afterwards verified, that the oscillograph beam was not recording
the concentration on a linear scale. This defect would distort a true error law
distribution into one resembling that shown in figure 5.

In an attempt to overcome these defects a new pipe 1650 cm long was fixed to
a straight bed. Electrodes were placed at three points, 13, 332 and 1631 cm from
the piston.

Experiments were made at two speeds, 222 and 136/cm/s. Figure 6 shows the
time variation of concentration at 1631 cm and figure 7 at 322 cm during the faster
run. It will be seen that at 1631 cm when ¢ = 7-34s the distribution is nearly
symmetrical, but at 322 cm when ¢ = 1-45s it is not quite so symmetrical. The period
during which the concentration was greater than half the maximum was found by
measuring figures 6 and 7. It was 0-316s at X = 1631 cm and 0-151s at 322cm.
These correspond with distances

22, = 222(0-316) = 70-1om at X = 1631
and 2z, = (222)(0-151) = 33-5cm at X = 322,

The corresponding values of K are:

- [3(70-1)]?
1 2\ - o . 241
at 1631 cm, K (0-693) (1-34) 60-4 cm?s™1,

_ B35 e
and at 322 cm, K_4(O-693)(1-45)_7000m st
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The internal diameter of the pipe was 0-9525 cm, so that

(0-9525) (222)

E="—%m

=193 x 104,

and using figure 2 this corresponds to U/v, = 17-5. Thus at X = 1631 cm

K (60-4)(17-5) o
avy  (0-476)(222) 10-0;
)

K (70-0)(17-5
at X = 322 cm, a;;=(O.—1—7§~v)(222)=11-6.
The theoretical value is 10-1, so that at X = 1631 cm the dispersion is very close
indeed to the theoretical value. At X = 322 the spread of the salt is a little greater
than theory predicts.
Figure 8 shows the time variation of C at the lower speed 136 cm/s. It will be seen
that the curve is not at all Gaussian. It is noticeably steeper at the front than the
rear. This characteristic shows slightly in figure 7 for U = 222 cm/s at X = 322, but

T

T T
N
o

30

T T T T

\.
~
P

s

N
\. o
20 . o,
%° T—e—
| 1 | I I | |1 | ! | 1] I J
114 16 118 12:0 12:2 12:4 12:6 12-8
t (sec)

Ficure 8. Pulse at X = 1631, U =136 cm/s, R =1-2x 10%

is less noticeable at X = 1631. It seems that at U = 136 cm/s, when B = 1-18 x 104,
the distribution has not yet become Gaussian at X = 1631 cm. The reason for
this is no doubt that the laminar part of the boundary layer is rather thick at
R = 118 x 10, and the loss of salt by molecular diffusion from that layer takes
longer than in the case where R is higher. Measuring the curve of figure 8 it is found
that z; = 82-8cm, ¢ = 125, so that K = 51-3 cm?/s. Hence

K (51:3)(161)

ave  (0-476)(136) 12:8.
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Rough pipes

The universal distribution of velocity represented by (3-1) applies to rough pipes
as well as smooth ones. It might therefore be expected that the dispersive power of
rough pipes would also be represented by (4:19). To test this prediction a piece of
2in. pipe 247-3cm long was artificially roughened and fitted to the piston at
F (figure 4). To roughen the pipe a plastic adhesive Araldite, which was kindly
supplied by Dr de Bruyne of Aeroresearch Litd, was mixed with toluene and the
inner surface of the tube wetted with the mixture. After draining and leaving for
a time to get tacky, dry sand which could pass a sieve of mesh 20/in. but be retained
by a sieve of mesh 30/in., was poured through the tube till dry sand came out of the
far end. A cylindrical piece of brass ;in. diameter was then pulled through the
£in. tube, thus ensuring that no sand projected more than % in. from the wall. The
resistance of this tube was determined by measuring the time necessary to fill
a calibrated bucket and at the same time measuring the pressure difference between
the ends of the roughened section.

To find the mean velocity it was first necessary to find the mean diameter of the
pipe. This was done by filling it with water and weighing. The weight of water was
161-3 g, so that the area of cross-section was 161-3/247-3 = 0-652 cm?2. The mean
radius was therefore @ = 7~%(0-652)% = 0-455cm. In a run which filled 8-01. in 84s,
U= (82) (0-652 Sf;(( ()lgz %) = 146 cm/s. The pressure difference between pressure holes 245cm
apart was that due to 41-1cm of mercury in a mercury-water manometer. The
pressure fall in 245 cm was therefore

(41-1) x (13-6— 1) (981) = 5076 x 105 dynes/cm?.
The friction stress 7, was

. lafil'i _ (0-4555) (5-076 x 10°)
L s 2 x 245

= 4-71 x 102dynes/cm.2

In this case therefore since

vy = (471)% = 21-7 cm/s, (81)
U 146
and v—* = m = 6-73.

The concentration-time record obtained in this experiment is shown in figure 9,
and the result of measuring it shown in figure 10. It will be seen that the distribution
of salt is very nearly symmetrical. The points do not quite fall on a smooth curve.
This might be expected from an inspection of figure 9. The waviness of the record
is due to a small amount of the 50-cycle fluctuation in the electric supply. This
fluctuation would not matter if the spot of the cathode-ray oscillograph moved
exactly in a vertical line, but it is difficult with a double-beam instrument to ensure
that this always happens, and as will be seen there is a difference in phase between
the waviness of the upper and lower edges of the trace. This gives rise to a small
periodic variation in measurements of the width of the record. The ordinates in
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figure 10 represent the difference between the width of the record before and after
he arrival of the salt at the electrode.

When U = 146 cm/s the dispersive power of the smooth pipe may be expected to.
vy(smooth) 675
vy(rough) — 17 0-4. Thus the
12 cm of smooth pipe may be taken as equivalent to 5cm of rough pipe. For this

be less than that of the rough pipe in the ratio

1-71
14 16 | . 18 2:0  sec

F16ure 9. Record of pulse in a very rough pipe, U = 146 cm/s.

~ °
B . /'/ ".‘o
- o \
N / %
B ! \
- ° ?
B J \.\
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L . \
- /*—0 305 sec—-—~>.\
L ° Py
] °
L [} \
: ° .\o\
| /./ .’\.
— LJ 1:71 .\.)
- ’0 : Q...
- ") 1 m.
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Ficure 10. Concentration-time curve from the record of figure 9.

reason it was thought best to take the instant when the salt entered the rough
section as the ¢ = 0 rather than the instant of injection of the salt. The time scales
of figures 9 and 10 were obtained by counting the 50-cycle marks from the instant
the salt began to pass the first electrode. The electrodes were just outside the
roughened length 250 cm apart. The time taken for a point moving at the mean
speed, 146 cm/s to traverse 250 cm is 1-71 s, this point is marked in figures 9 and 10.
It will be seen that the maximum concentration is attained only a very short time
before this.
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Measurement of K from record and comparison with theory

The length of time during which the concentration is greater than half its
maximum value is marked in figure 10. It is 0-305s. This corresponds to a length
0-305 x 146 = 44-54 cm. From (7-1), therefore,

(22212 R
K = £{0-603) (L7T) = 104X 10°
K . 1-04 x 102 T .
The value of avy is therefore (0-455) (217) — 10-5. This is close to the theoretical

value 10-1, so that it appears that the theoretical formula (4-19) applies even with
a very rough pipe.
Ezxperiments with a curved pipe

The universal distribution of velocity in a straight pipe applies to rough as well
as smooth ones, but it no longer applies if they are curved. The large-scale pipes
used for conveying oil or water across the country have to accommodate themselves
to the surface on which they are laid. In most cases therefore they cannot be straight.
In comparing laboratory experiments with observations made in large pipe lines
it is necessary to know the effect of curvature of the centre line on the dispersive
power of a fluid flowing through a pipe. For this reason a $in. pipe was bent into
a circle approximately 3ft. in diameter and fitted to the charging piston (see
figure 4). The circumference of the pipe was 284cm and at each end there were
straight sections which brought the length between pressure measuring holes to
324 cm. Two measurements were made: (@) at U = 113 cem/s, (b) at U = 202 cm/s;
the results are summarized in table 3, and those for straight pipes are given for

TaBLE 3. COMPARISON WITH THEORETICAL VALUE K /av, =10-1

Pipe U (cm/s) R U/vy Klavy
40 in. (Allen & Taylor) 105 9-7 x 10° 26-0 10-6
# in. smooth, X = 322 222 1-9 x 10* 17-6 11-6
4 in. smooth, X = 1631 222 1-9 x 10t 17-5 10-0
4 in. smooth, X = 1631 136 1-2 x 10* 16-1 . 12-8
4 in. rough, X = 245 146 1-3 x 10* 6-73 10-5
£ in. curved, X = 250 (a) 113 1-7 x 10* 15-0 21-9
4 in. curved, X = 250 (b) 202 1-7 x 10% 16-1 15-0

Note. The values of U /v, for the curved pipe were measured. The values for a straight pipe
from figure 2 are: (a) 16-0 instead of 15 and (b) 17-1 instead of 16-1, so that the resistance
coefficient is very little increased by curvature.

comparison. It will be seen that when the radius of curvature of the centre line of
the pipe is 96 times the radius of the cross-section the value of K/av, is much
greater than it is for a straight pipe, even though the resistance coefficient is very
little increased by this amount of curvature.

9. SPREAD OF RADIOACTIVE TRACER IN PIPE LINE

Hull & Kent (1952) injected a radioactive tracer into a 10in. pipe line 182 miles
long through which crude oil was flowing at 2-68 ft./s. They found that the curves
representing concentration of the tracer against time at all stations in this pipe
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were very nearly Gaussian error curves. Some of these are here reproduced in
figure 11. The time, 2¢;, during which the concentration at various intermediate
stations was greater than half the maximum concentration were measured and the
value of K deduced from the expression
Usg
= - . 9-1

4X1n2 (91)
Here X is the length of pipe from the point of injection to the point of observation.
The mean speed of flow was 81-7 cm/s. The values of K found are given in table 4.

60—

so- A
- / ‘x\

2
g 30 /
A v
8 B ® ) .‘.3
20—
- ’/-}’-'.'l\h
10~ /‘/7 N
5 ./.v [ J A A \..\. .
0 Ll NN~
800 600 400 200 0 200 400 600 800
t (sec)

Freure 11. Hull & Kent’s experiment. Observation stations: A Bonanza (13:8 miles);
® Green River (43-1 miles); @ Hanna (108-5 miles).

TABLE 4. DISPERSION OF A POINT SOURCE IN A 10 IN. PTPE 182 MILES
LONG FROM RANGELY TO SALT LAKE

X (miles) 1-9 13-8 43-1 108-5 125 130-2 182-5
2ty (s) 67 211 402 669 746 770 895
K (em?s71) 718 980 1140 1150 1350 1380 1330
K awy 12-3 16-9 19-3 20-0 22-8 23-4 22-5

The Reynolds numbers were between 21500 and 27 000.
For R = 24000, figure 2 gives U/v, = 17-9. The values of K/av, are given in the last row of
table 4.

It will be seen that only at X = 1-9 miles was the dispersion at all close to the
theoretical value represented by K /av, = 10-1. This may well be due to the existence
of bends which, as was shown in §8, would necessarily increase the dispersion above
what would occur in a straight unobstructed pipe. That this may well be the cause
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of the discrepancy can be inferred from the fact that the observed dispersion
increases as X% instead of increasing as X*. In a straight pipe it seems certain
that the dispersion must increase proportionally to X?*.

Hull & Kent (1952) give two more results. In the 8in. pipe line from El Segundo
to Montebello U = 3-61ft/s = 110cm/s, B = 3:0 x 105, X = 24 miles, the total time
of flow was 3-51 x 10*s and 2f;, = 120s, which is equivalent to 13200 cm. Hence

(6600)z
k=1

=4 102 9 93
(0-693) (3-51 x 10%) 48 x 10, and from figure 2, U /v, 3-5 so that

K 4-48 x 102
avy  (x 254y 110 20'0) = 944 (9-2)
For the 20in. line from San Pablo to Richmond the diffusion coefficient was given
by Hull & Kent as 2-04ft./s. In c.g.s. units thisis 1890 cm?/s. In thistest U = 4-51ft/s
or 1372 cm/s and R = 1-0 x 10%; in figure 2 this corresponds to U/v, = 21-0, hence
K (1890) (21-0)

ave (10 x 2-54) (1372) — 11-4. (9-3)

10. PREDICTED DISTRIBUTION OF CONCENTRATION WHEN ONE FLUID
FOLLOWS ANOTHER IN A PIPE

It will be supposed that the fluids have the same, or at any rate comparable,
viscosities, and that a long straight pipe is initially full of fluid 4. At time £ = 0
another fluid B enters the tube at one end X = 0, and pushes the fluid 4 along the
tube. There is a length in which both fluids are mixed. The problem of determining
the length of the zone of mixture is one which can be treated by the use of the
virtual diffusion coefficient K provided the liquids are miscible and do not differ
greatly in density or viscosity.

If C is the proportion of fluid B in the mixture at any point, the equation for

diffusion of C is 5 020
[’—az IZK—éx_%’ (10‘1)

where z, is measured relative to axes which move with the mean speed of flow U,
and [0C/ot], is the time rate of change of C at points which move with velocity U.
The appropriate solution of (10-1) is

C = 4~ fert (jo K, (102)
2 Z
where erf(z) = I f . e~?dz.

If a length S be defined such that it includes all the points where 0-99 > C > 0-01
it is found from (10-2) that

erf (}SK-*-%) = 0-98.
From tables erf (1-645) = 0-98,
so that S = 4K*#(1-645).
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Inserting the value of K from (4-19)

S?% = (6-58)2(10-1) av,.t,
and since t = XU,

82 = 437aX (%*) (10-3)

Thus in a given pipe at a given speed Soc X3,

Comparison with experiments

Smith & Schulze (1948) describe experiments with a 2in. pipe which was not in
a straight length but was wound round into a large number of coils. They summarized
their experimental results in the empirical formula

8 = (1-075R~0%7 1 0-55) X062, (10-4)

In Smith & Schulze’s formula (10-4) S and X are measured in feet. R is the
Reynolds number and is non-dimensional. This expression is derived from experi-
ments on the flow in a 2in. pipe and is not therefore applicable to pipes of other sizes.
Smith & Schulze did however apply it to larger pipes and found good agreement in
some cases. This is very surprising in view of the fact that the theoretical expression
(4-19) shows that for a given Reynolds number, i.e. a given U/v,, S should be pro-
portional to at. The empirical formula (10-4) might therefore be expected to under-
estimate § for all the four experimental pipes (6, 8, 10, 12in. diameter) for which
they were able to obtain measurements. In fact (10-4) overestimates § for the
6in. pipe and underestimates it for the 12in. pipe. It seems to me that the reason
is that the experiments made with a coiled 2in. pipe with two pumps in the circuit
would be expected to introduce far greater dispersion than a straight pipe of the
same diameter.

The experimental results given by Smith & Schulze are quoted in the last column,
10, of their tables (figures 14, 15, 16, 17, Smith & Schulze 1948). They are quoted
in a unit tabled as ‘Bbl’. This appears to be ‘barrels of oil contained in the length
S of the pipe’. To compare experimental results with formulae (9-3) and (9-4) it is
necessary to convert the figures given in terms of ‘Bbl’ to § in feet. This can be
done without knowledge of the exact volume of the unit ‘Bbl’ because in column 8
of Smith & Schulze’s tables the value of § calculated by their empirical formula
(10-4) is given, and in column 9 these are converted by a constant factor into ‘Bbl’.
Thus the observed values of § can be calculated by multiplying the figures given
as ‘observed Bbl’ in column 10 by the ‘calculated’ value of S given in column 8 and
dividing by the ‘calculated’ numbers given in column 9 in terms of ‘Bbl’. The
figures in the last columns of table 5 of the present paper and headed ‘observed’,
were obtained in this way.

The comparison between Smith & Schulze’s measurements, the empirical formula
(10-4), and the present theoretical formula (10-3), is given in table 5. It will be seen
that for all except the longest runs, 1 million feet or more, the purely theoretical
formula, derived a priori, gives better agreement with observation than the
empirical one based on experiments on dispersion in a 2in. pipe. As was to be
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expected the empirical formula, which does not allow for variation in pipe diameter
except in so far as R varies, underestimates S for large pipes. That it actually over-
estimates the dispersion in the case of the 6in. pipe must be due to the fact that
the empirical formula (10-4) is based on experiments with a coiled pipe. The method
of analysis used in the present paper would lead one to expect that the dispersion
in a coiled pipe may be much greater than in a straight pipe and the experiment
described in §8 shows that this is in fact the case.

TABLE 5. COMPARISON BETWEEN SMITH & SCHULZE’S DATA
AND THE PRESENT THEORY

S is distance in feet along pipe of region where concentration of both components is greater

than 19,
6 in. pipe (figure 14, Smith & Schulze) gasolene—gasolene

S N S

empirical theory observed
X (ft.) 10-R Ul eq. (104)  eq. (10-3) ——— A
299060 2-39 17-9 1787 1365 1150 1270%*
49 19-5 1593 1310 —_ 1050%*
74 20-4 1525 1280 920 950%*
10-1 21-1 1489 1228 — 780*

24-6 23-0 1425 1200 810 —

24-5 23-0 1428 1270 920 —

8 in. pipe (figure 15, Smith & Schulze)

N 8 S
X (ft.) 103 R Ulvy eq. (10-4) eq. (10-3) observed
291298 2-19 22-9 1416 1370 1410
606514 2-19 22-9 2205 1975 2070
895488 2-19 22-9 2825 2400 2520
1168147 2-19 22-5 3342 2740 3220
1168147 2-24 23-0 3339 2740 3210

12 in. pipe (figure 17, Smith & Schulze)

S S : s

X (ft.) 10-°R U/vy eq. (104)  eq.(10-3)  observed

322186 590 25-4 1458 1670 1770

661109 576 25-4 2292 2390 2425
1018301 5-84 25-4 2982 2970 2890
1402896 591 25-4 3638 3480 3505
1726085 579 25-4 4560 3870 3895
2033803 5-79 25-4 4555 4190 4360

2279538 4-50 24-6 4980 4340 4670

* Colorimetric method.

The measurements described in §8 were mostly made by Dr T. H. Ellison, who
designed the apparatus for recording the changes in conductivity. Without his
assistance this part of the work would not have been done and I wish to express my
thanks to him.
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A study of gauge-invariant non-local interactions

By M. CariTien* anp R. E. Prreris, F.R.S.

Department of Mathematical Physics, University of Birmingham

(Received 19 January 1954)

The paper investigates the possibility of introducing ‘non-local’ interactions, i.e. interactions
represented by four-dimensional integral operations, in order to eliminate divergences in the
quantum theory of interacting fields. In particular, a type of equation is discussed which
preserves all the required invariance properties, including gauge invariance and macroscopic
causality. It turns out that equations of this type still give divergent results. The origin of
these divergences is discussed, and it is shown that if there is any way of formulating & finite
theory it would have to be very different from the one investigated here.

1. INTRODUCTION

By ‘theories with non-local interactions’ we shall here understand equations in
which the point interactions of the usual, ‘local’, field theories are replaced by
integral expressions (representing in some sense a finite space-time extension of
elementary particles) in order to avoid singularities. They are distinct from attempts
to introduce internal variables for associating more than one type of particle with
the same field (Yukawa 1949, 1950), though there are some points of contact
between these approaches (Bloch 1950).

The idea of non-local interactions goes back to Lorentz’s picture of a finite
electron radius. The first suggestion of making such interactions Lorentz-invariant
was made by Wataghin (1934), and the classical (i.e. non-quantum) aspects of the
problem were studied by McManus (1948) and others. These attempts were made at
a time when the infinities appeared to prevent further progress. Since then the
development of the idea of renormalization by Schwinger, Feynman and others has
demonstrated that the present formalism can be made to give unambiguous finite
answers which, in the electromagnetic case, are in excellent agreement with

observation.
* Now at Pupin Physiecs Laboratory, Columbia University.
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X =15cm X =468 em
Freure 5. Record showing pulse at X = 15 and at 468 em.
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Ficure 9. Record of pulse in a very rough pipe, U = 146 cm/s.
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